Answer:
[tex]y=2x-4[/tex]
Step-by-step explanation:
Let the equation of line is [tex]y=mx+b[/tex], where [tex]m[/tex] is the slope of the line.
It passes through [tex](-5,-14),(-2,-8)\ and\ (1,-2)[/tex].
(Slope of the line joining [tex](x_1,y_1)\ and\ (x_2,y_2)=\frac{y_2-y_1}{x_2-x_1}[/tex])
Hence slope of the given line
[tex]m=\frac{-8(-14)}{-2-(-5)}=\frac{-8+14}{-2+5}=\frac{6}{3}=2[/tex]
Equation of line is: [tex]y=2x+b[/tex]
The line passes through [tex](1,-2)[/tex]
[tex]-2=2\times 1+b\\b=-2-2\\b=-4[/tex]
Check if [tex](-5,-14)[/tex] is on the line [tex]y=2x-4[/tex]
[tex]L.H.S.=-14\\R.H.S.=2\times (-5)-4=-10-4=-14\\L.H.S.=R.H.S.[/tex]
Hence line passes through [tex](5,-14)[/tex].
Check if [tex](-2,-8)[/tex] is on the line [tex]y=2x-4[/tex]
[tex]L.H.S.=-8\\R.H.S.=2\times (-2)-4=-4-4=-8\\L.H.S.=R.H.S.[/tex]
Hence line passes through [tex](-2,-8)[/tex].