During the process approximately 110 KJ heat will be absorbed by the gas.
Answer: Option D (110KJ)
Explanation:
According to the question, the given values are,
The initial temperature,
[tex]T_{i}=270 K[/tex]
Let us assume that the final temperature will be [tex]T_{f}[/tex], the initial pressure will be [tex]P_{i}[/tex] and the final pressure will be,
[tex]P_{f}=1.9 P_{i}[/tex]
As we know that the Ideal Gas Equation at the constant volume is,
[tex]P V=n R T[/tex]
Then, for initial conditions,
[tex]P_{i} V=n R T_{i}[/tex]
And, for the final conditions,
[tex]P_{f} V=n R T_{f}[/tex]
Now, on dividing both the equations, we get;
[tex]\frac{P_{i}}{P_{f}}=\frac{T_{i}}{T_{f}}[/tex]
By putting all the values, we get,
[tex]\frac{P_{i}}{1.9 P_{i}}=\frac{270 K}{T_{f}}[/tex]
[tex]\begin{array}{c}{T_{f}=1.9 \times 270 \mathrm{K}} \\{T_{f}=513 \mathrm{K}}\end{array}[/tex]
Hence, the heat absorbed at a constant volume V will be,
[tex]Q=m c_{v} \Delta T[/tex]
[tex]Q=m\left(c_{p}-R\right)\left(T_{f}-T_{i}\right)[/tex]
[tex]Q=29 \times(24-8.31)(513-270)[/tex]
[tex]Q=110.56743 \mathrm{kJ}[/tex]