Respuesta :

Answer:

The values are

a) [tex]h(3)=91[/tex]

b) [tex]h(-1)=3[/tex]

c) [tex]h(-x)=x^4+x^2+1=h(x)[/tex]

d) [tex]h(3a)=9a^2(9a^2+1)+1[/tex]

Step-by-step explanation:

Given that the function h is defined by

[tex]h(x)=x^4+x^2+1[/tex]

To find

a) h(3)

Put x=3 in the given function [tex]h(x)=x^4+x^2+1[/tex] we get

[tex]h(3)=3^4+3^2+1[/tex]

[tex]=81+9+1[/tex]

[tex]=91[/tex]

Therefore [tex]h(3)=91[/tex]

b) h(-1)

Put x=-1 in the given function [tex]h(x)=x^4+x^2+1[/tex] we get

[tex]h(-1)=(-1)^4+(-1)^2+1[/tex]

[tex]=1+1+1[/tex]

[tex]=3[/tex]

Therefore [tex]h(-1)=3[/tex]

c) h(-x)

Put x=-x in the given function [tex]h(x)=x^4+x^2+1[/tex] we get

[tex]h(-x)=(-x)^4+(-x)^2+1[/tex]

[tex]=x^4+x^2+1[/tex]

[tex]=h(x)[/tex]

Therefore [tex]h(-x)=x^4+x^2+1=h(x)[/tex]

d) h(3a)

Put x=3a in the given function [tex]h(x)=x^4+x^2+1[/tex] we get

[tex]h(3a)=(3a)^4+(3a)^2+1[/tex]

[tex]=3^4.a^4+3^2.a^2+1[/tex]

[tex]=81a^4+9a^2+1[/tex]

[tex]=9a^2(9a^2+1)+1[/tex]

Therefore [tex]h(3a)=9a^2(9a^2+1)+1[/tex]

ACCESS MORE