Respuesta :
Answer:
a) [tex] p_V = 2*P(t_{9} >|2.48|) =0.0349 [/tex]
We can use the following excel code: "=2*(1-T.DIST(2.48,9,TRUE))"
[tex] 0.03 < p_v <0.04[/tex]
b) [tex] p_V = 2*P(t_{9} >|-3.95|)=0.003355 [/tex]
We can use the following excel code: "=2*(1-T.DIST(3.95,9,TRUE))"
[tex] p_v <0.01[/tex]
c) [tex] p_V = 2*P(t_{9} >|2.69|) =0.02480 [/tex]
We can use the following excel code: "=2*(1-T.DIST(2.69,9,TRUE))"
[tex] 0.01 < p_v <0.03[/tex]
d) [tex] p_V = 2*P(t_{9} >|1.88|) =0.09281[/tex]
We can use the following excel code: "=2*(1-T.DIST(1.88,9,TRUE))"
[tex] 0.05 < p_v <0.1[/tex]
Step-by-step explanation:
For this case we are testing the following system of hypothesis:
Null hypothesis: [tex]\mu =0[/tex]
Alternative hypothesis: [tex]\mu \neq 0[/tex]
The sample size is n=10, so then the degrees of freedom are given by:
[tex] df=n-1= 10-1=9[/tex]
In order to calculate the p value we can use the fact that we are conducting a bilateral test so then the p value is given by:
[tex] p_V = 2*P(t_{9} >|t_0|) [/tex]
Where [tex] t_0[/tex] represent the calculated or observed statistic.
a) t0= 2.48
[tex] p_V = 2*P(t_{9} >|2.48|) =0.0349 [/tex]
We can use the following excel code: "=2*(1-T.DIST(2.48,9,TRUE))"
[tex] 0.03 < p_v <0.04[/tex]
b) t0= -3.95
[tex] p_V = 2*P(t_{9} >|-3.95|)=0.003355 [/tex]
We can use the following excel code: "=2*(1-T.DIST(3.95,9,TRUE))"
[tex] p_v <0.01[/tex]
c) t0=2.69
[tex] p_V = 2*P(t_{9} >|2.69|) =0.02480 [/tex]
We can use the following excel code: "=2*(1-T.DIST(2.69,9,TRUE))"
[tex] 0.01 < p_v <0.03[/tex]
d) t0=1.88
[tex] p_V = 2*P(t_{9} >|1.88|) =0.09281[/tex]
We can use the following excel code: "=2*(1-T.DIST(1.88,9,TRUE))"
[tex] 0.05 < p_v <0.1[/tex]