Answer:
The fraction of the original kinetic energy of the bullet appears as mechanical energy in the harmonic oscillator is 0.00468.
Explanation:
Given that,
Mass of block = 4.8 kg
Mass of bullet = 50 g
Spring constant = 500 N/m
Speed of bullet = 130 m/s
(a). We need to calculate the velocity
Using conservation of momentum
[tex]m_{b}v_{b}=(m+m_{b})v[/tex]
[tex]v=\dfrac{m_{b}v_{b}}{(m+m_{b})}[/tex]
Put the value into the formula
[tex]v=\dfrac{0.05\times130}{4.8+0.05}[/tex]
[tex]v=1.340\ m/s[/tex]
We need to calculate the amplitude of the resulting simple harmonic motion
Using formula energy
[tex]\dfrac{1}{2}(m+m_{b})v_{1}^2=\dfrac{1}{2}kx^2[/tex]
Put the value into the formula
[tex](4.8+0.05)\times1.340=500x^2[/tex]
[tex] x^2=\dfrac{4.8+0.05}{500}[/tex]
[tex]x=\sqrt{\dfrac{4.8+0.05}{500}}[/tex]
[tex]x=0.0984\ m[/tex]
(b). We need to calculate the kinetic energy
Using formula of kinetic energy
[tex]K.E=\dfrac{1}{2}\times0.05\times(130)^2[/tex]
[tex]K.E=0.0423\ J[/tex]
[tex]K.E=\dfrac{1}{2}mv^2+mgh[/tex]
for harmonic oscillator,
[tex]K.E=\dfrac{1}{2}\times(4.8+0.05)\times(1.340)^2+(4.8+0.05)\times9.8\times0.0984[/tex]
[tex]K.E=9.031\ J[/tex]
The fraction of the original kinetic energy of the bullet appears as mechanical energy in the harmonic oscillator
[tex]\dfrac{K.E_{b}}{K.E}=\dfrac{0.0423}{9.031}[/tex]
[tex]\dfrac{K.E_{b}}{K.E}=0.00468[/tex]
Hence, The fraction of the original kinetic energy of the bullet appears as mechanical energy in the harmonic oscillator is 0.00468.