The average density of the Sun is on the order 103 kg/ m3 . (a) Estimate the diameter of the Sun. (b) Given that the Sun subtends at an angle of about half

Respuesta :

Answer:

The diameter is  [tex]\approx[/tex][tex]10^{11}m[/tex] and [tex]r_{sun} = 10^{9}[/tex]m

Explanation:

Given:

[tex]m_{sun} = 10^{30} kg[/tex]

[tex]\\p_{sun}= 10^{3}\frac{kg}{m^{3}}[/tex]

Required:

[tex]r_{sun}[/tex]=?

d= ?

We know,

[tex]{v_{sun} = \frac{m_{sun}}{p_{sun}}[/tex]

       = [tex]\frac{10^{30}}{10^{3}}[/tex]

       = [tex]10^{27}m^{3}[/tex]

[tex]v_{sun} = \frac{4}{3}\times\pi r^{3_{sun}}[/tex]

      [tex]\approx[/tex][tex]r^{3}_{sun}[/tex]

[tex]r_{sun} = 10^{9}[/tex]m

From the figure attached,

[tex]sin\theta=\frac{r_{sun}}{d}}[/tex]

[tex]d=\frac{r_{sun}}{sin\theta}}[/tex]

  =[tex]\frac{10^{9}}{sin5}}[/tex]

   [tex]\approx[/tex][tex]10^{11}m[/tex]

The diameter is  [tex]\approx[/tex][tex]10^{11}m[/tex] and [tex]r_{sun} = 10^{9}[/tex]m

Ver imagen nandhini123
ACCESS MORE