The choices are missing, but we can find the right answer by using the given function
The inverse of [tex]y=2^{3x}+1[/tex] is [tex]y=\frac{1}{3}[\frac{log(x-1)}{log(2)}][/tex]
Step-by-step explanation:
Let us revise the steps of finding the inverse of a function
∵ [tex]y=2^{3x}+ 1[/tex]
- Switch x and y
∴ [tex]x=2^{3y}+1[/tex]
- Subtract 1 fro both sides
∴ [tex]x-1=2^{3y}[/tex]
- Insert ㏒ in both sides
∴ [tex]log(x-1)=log(2^{3y})[/tex]
- Remember [tex]log(a^{n})=n.log(a)[/tex]
∵ [tex]log(2^{3y})=(3y).log(2)[/tex]
∴ [tex]log(x-1)=(3y).log(2)[/tex]
- Divide both sides by ㏒(2)
∴ [tex]\frac{log(x-1)}{log(2)}=3y[/tex]
- Divide both sides by 3
∴ [tex]\frac{1}{3}[\frac{log(x-1)}{log(2)}]=y[/tex]
- Switch the two sides
∴ [tex]y=\frac{1}{3}[\frac{log(x-1)}{log(2)}][/tex]
The inverse of [tex]y=2^{3x}+1[/tex] is [tex]y=\frac{1}{3}[\frac{log(x-1)}{log(2)}][/tex]
Learn more:
You can learn more about the logarithmic function in brainly.com/question/11921476
#LearnwithBrainly