Respuesta :
Answer:
[tex] \bar X = \frac{\sum x_i f_i}{n} = \frac{1220750}{500}=2441.5[/tex]
[tex] s^2= \frac{3408029125 -\frac{(1220750)^2}{500}}{500-1} =856849.7[/tex]
[tex] s= \sqrt{856849.7}=925.662[/tex]
Step-by-step explanation:
For this case we can create the following table
Interval Frequency (f) Midpoint(xi) xi *f xi^2* f
0-499 9 249.5 2245.5 560252.3
500-999 13 749.5 9743.5 7302753
1000-1499 33 1249.5 41233.5 51521258.25
1500-1999 115 1749.5 201193.5 361986278.8
2000-2499 125 2249.5 281187.5 632531281.3
2500-2999 81 2749.5 222709.5 612339770.3
3000-3499 47 3249.5 152726.5 496284761.8
3500-3999 45 3749.5 168727.5 632643761.3
4000-4499 22 4249.5 93489 397281505.5
4500-4999 10 4749.5 47495 225577502.5
Total 500 1220750 3408029125
[tex] \sum f_i = 500 , \sum x_i f_i = 1220750, \sum x^2_i f_i = 3408029125[/tex]
For this case we can calculate the sample mean with this formula:
[tex] \bar X = \frac{\sum x_i f_i}{n} = \frac{1220750}{500}=2441.5[/tex]
And for the sample variance we can use the following formula:
[tex] s^2= \frac{\sum x^2_i f_i - \frac{(\sum x_i f_i)^2}{n}}{n-1}[/tex]
And if we replace we got:
[tex] s^2= \frac{3408029125 -\frac{(1220750)^2}{500}}{500-1} =856849.7[/tex]
And the deviation is just the square root of the sample variance and for this case is:
[tex] s= \sqrt{856849.7}=925.662[/tex]
The mean of a distribution is its average, while the standard deviation is the summary of how far each data in the dataset, is to the mean.
The mean and the standard deviation are 2441.5 and 924.7 respectively.
First, we calculate the class midpoint (x) from the given intervals.
The class midpoint is the average of the intervals. So, we have:
[tex]x_1 = \frac{0+499}{2} = 249.5[/tex]
[tex]x_2 = \frac{500+999}{2} = 749.5[/tex]
....
[tex]x_{10} = \frac{4500+4999}{2} = 4749.5[/tex]
So, the table becomes:
[tex]\begin{array}{cc}x&f&249.5&9&749.5&13&1249.5&33&1749.5&115&2249.5&125&2749.5&81&3249.5&47&3749.5&45&4249.5&22&4749.5&10\end{array}[/tex]
The mean of the distribution is:
[tex]\bar x = \frac{\sum fx}{\sum f}[/tex]
This gives:
[tex]\bar x = \frac{9 \times 249.5 + 12 \times 749.5 + 33 \times 1249.5 + 115 \times 1749.5 + 125 \times 2249.5 + .... + 10 \times 4749.5}{9+13+33+115+125+81+47+45+22+10}[/tex]
[tex]\bar x = \frac{1220750}{500}[/tex]
[tex]\bar x = 2441.5[/tex]
The standard deviation is calculated as follows:
[tex]\sigma = \sqrt{\frac{\sum f(x - \bar x)^2}{\sum f}}[/tex]
So, we have:
[tex]\sigma = \sqrt{\frac{9 \times (249.5 -2441.5)^2 + 13 \times (749.5 -2441.5)^2+ 33 \times (1249.5 -2441.5)^2+...........+ 10 \times (4749.5-2441.5)^2}{9+13+33+115+125+81+47+45+22+10}[/tex]
[tex]\sigma = \sqrt{\frac{427568000}{500}[/tex]
[tex]\sigma = \sqrt{855136[/tex]
[tex]\sigma = 924.7[/tex]
Hence, the mean and the standard deviation are 2441.5 and 924.7 respectively.
Read more about mean and standard deviation at:
https://brainly.com/question/10729938