Respuesta :
The sum of the measures of the interior angles
The sum of interior angles of any polygon can be foud wuth the following general formula
Sum of interior angles = (n-2) \ times 180^{\circ}
where n is the number of sides
1. Nonagon
The Nonagon is a polygon with 9 sides. then,
n = 9
Sum of interior angles of Nonagon
= [tex](9-2) \times 180^{\circ}[/tex]
=[tex](7) \times 180^{\circ}[/tex]
= [tex]1260^{\circ}[/tex]
2.Pentagon
The Pentagon is a polygon with 5 sides. then,
n = 5
Sum of interior angles of Pentagon
= [tex](5-2) \times 180^{\circ}[/tex]
=[tex](3) \times 180^{\circ}[/tex]
= [tex]540^{\circ}[/tex]
3. 11-gon
The 11-gon is a polygon with 11 sides. then,
n = 11
Sum of interior angles of 11-gon
=[tex](11-2) \times 180^{\circ}[/tex]
=[tex](9) \times 180^{\circ}[/tex]
= [tex]1620^{\circ}[/tex]
4. 18-gon
The 18-gon is a polygon with 18 sides. then,
n = 18
Sum of interior angles of 18-gon
=[tex](18-2) \times 180^{\circ}[/tex]
=[tex](16) \times 180^{\circ}[/tex]
=[tex]2880^{\circ}[/tex]
5. 38-gon
The 38-gon is a polygon with 38 sides. then,
n = 38
Sum of interior angles of 38-gon
=[tex](38-2) \times 180^{\circ}[/tex]
=[tex](36) \times 180^{\circ}[/tex]
= [tex]6480^{\circ}[/tex]
6.56-gon
The 56-gon is a polygon with 56 sides. then,
n = 56
Sum of interior angles 56-gon
=[tex](56-2) \times 180^{\circ}[/tex]
=[tex](54) \times 180^{\circ}[/tex]
=[tex]9720^{\circ}[/tex]