Calculate the wavelength of light emitted when each of the following transitions occur in the hydrogen atom. What type of electromagnetic radiation is emitted in each transition?a. n = 4 → n = 3b. n = 5 → n = 4c. n = 5 → n = 3

Respuesta :

Answer:

a. 1875 nm

b. 4051 nm

c. 1282 nm

These all are infrared electromagnetic radiation.

Explanation:

Our strategy here is to utilize the Rydberg equation for hydrogen atom electronic transition.

1/λ = Rh x (1/n₁² - 1/n₂²)   where  λ is the wavelength

                                                   Rh is Rydberg constant

                                                   n₁ and n ₂ are the energy levels ( n₁ < n₂ )

Now lets star the calculations.

a.  n₁  = 3, n₂ = 4

1/λ = 1.097 x 10⁷ /m x (1/3² - 1/4²) = 5.333 x 10⁵/m

λ  = 1/(5.333 x 10⁵ /m) = 1.875 x 10⁻⁶ m

Converting λ to nanometers:

1.875 x 10⁻⁶ m x (1 x10⁹ nm/m) = 1875 nm

b.  n₁  = 4, n₂ = 5

1/λ = 1.097 x 10⁷ /m x  (1/4² - 1/5²) = 2.468 x 10⁵/m

λ  = 1/(2.468 x 10⁵/m) = 4.051 x 10⁻⁶ m

4.051 x 10⁻⁶ m x  (1 x10⁹ nm/m)  = 4051 nm

c.  n₁  = 3, n₂ = 5

1/λ = 1.097 x 10⁷ /m x  (1/3² - 1/5²) = 7801 x 10⁵/m

λ  = 1/(7801 x 10⁵/m) = 1282 x 10⁻⁶ m

1282 x 10⁻⁶ m x  (1 x10⁹ nm/m)  = 1282 nm

All of these transitions fall in the infrared region of the spectrum.

The wavelength of each transition is obtained from the Rydberg formula as shown.

Using the Rydberg formula;

1/λ = R(1/n2^2 - 1/n1^2)

Where;

λ = wavelength

R = Rydberg constant = 1.097 × 10^7 m-1

n1 = initial energy level

n2 = final energy level

For the transition n = 4 → n = 3

1/λ =  1.097 × 10^7 m-1(1/3^2 - 1/4^2)

λ = 1.879 × 10^-6  m or 1879 nm

For the transition n = 5 → n = 4

1/λ =  1.097 × 10^7 m-1(1/4^2 - 1/5^2)

λ = 4.051  × 10^-6 m = 4051 nm

For the transition n = 5 → n = 3

1/λ =  1.097 × 10^7 m-1(1/3^2 - 1/5^2)

λ = 1.284 × 10^-6

λ = 1284 nm

Learn more: https://brainly.com/question/1613474

ACCESS MORE