Respuesta :

Solved given expression for x using the change of base formula log base b of y equals log y over log b is 1.46497

Step-by-step explanation:

Given Expression:

             [tex]3^{x+1}=15[/tex]

To solve this, first convert the exponential form into log form

If [tex]a^{x}=b \text { then } \log _{a} b=x[/tex]

So, when comparing the given expression with above,  a = 3, x = x + 1 and b = 15.

[tex]3^{x+1}=15[/tex] become as [tex]x+1=\log _{3}(15)[/tex]

Now, apply change of base formula to remove base 3 ,

       [tex]\log _{a}(y)=\frac{\log y}{\log a}[/tex]

Hence,

     [tex]\log _{3}(15)=\frac{\log 15}{\log 3}[/tex]

Substitute [tex]x+1=\log _{3}(15)[/tex] in above expression, we get

     [tex]x+1=\frac{\log 15}{\log 3}[/tex]

    [tex]x+1=\frac{1.17609}{0.47712}[/tex]

    x + 1 = 2.46497

    x = 2.46497 - 1

    x = 1.46497

ACCESS MORE