Solved given expression for x using the change of base formula log base b of y equals log y over log b is 1.46497
Step-by-step explanation:
Given Expression:
[tex]3^{x+1}=15[/tex]
To solve this, first convert the exponential form into log form
If [tex]a^{x}=b \text { then } \log _{a} b=x[/tex]
So, when comparing the given expression with above, a = 3, x = x + 1 and b = 15.
[tex]3^{x+1}=15[/tex] become as [tex]x+1=\log _{3}(15)[/tex]
Now, apply change of base formula to remove base 3 ,
[tex]\log _{a}(y)=\frac{\log y}{\log a}[/tex]
Hence,
[tex]\log _{3}(15)=\frac{\log 15}{\log 3}[/tex]
Substitute [tex]x+1=\log _{3}(15)[/tex] in above expression, we get
[tex]x+1=\frac{\log 15}{\log 3}[/tex]
[tex]x+1=\frac{1.17609}{0.47712}[/tex]
x + 1 = 2.46497
x = 2.46497 - 1
x = 1.46497