Respuesta :
Answer:
a = √11 and b = 6
Step-by-step explanation:
Refer to attached picture for reference
for an right triangle with angle θ
we are given
cos θ = 5/6 = length of adjacent side / length of hypotenuse
hence
adjacent length = 5 units
hypotenuse length = 6 units
the missing side is the "opposite" length which we can find with the Pythagorean equation. in our case:
hypotenuse ² = adjacent ² + opposite² (rearrange)
opposite ² = hypotenuse ² - adjacent ²
opposite ² = 6² - 5²
opposite = √ (6²-5²) = √11
sin θ = opposite length / hypotenuse (substitute values above)
sin θ = √11 / 6
hence a = √11 and b = 6

The values of a and b are [tex]\mathbf{a = \sqrt{11}}[/tex] and [tex]\mathbf{b = 6}}[/tex]
The given parameters are:
[tex]\mathbf{cos(\theta) = \frac 56}[/tex]
[tex]\mathbf{sin(\theta) = \frac ab}[/tex]
To determine the values of a and b, we make use of the following trigonometry ratio
[tex]\mathbf{cos^2(\theta) + sin^2(\theta) = 1}[/tex]
Substitute values for cosine and sine
[tex]\mathbf{(\frac 56)^2 + (\frac ab)^2 = 1}[/tex]
Evaluate the exponents
[tex]\mathbf{\frac{25}{36} + (\frac ab)^2 = 1}[/tex]
Collect like terms
[tex]\mathbf{(\frac ab)^2 = 1 - \frac{25}{36}}[/tex]
Take LCM
[tex]\mathbf{(\frac ab)^2 = \frac{36 -25}{36}}[/tex]
[tex]\mathbf{(\frac ab)^2 = \frac{11}{36}}[/tex]
Take square roots of both sides
[tex]\mathbf{\frac ab = \frac{\sqrt{11}}{6}}[/tex]
By comparison:
[tex]\mathbf{a = \sqrt{11}}[/tex]
[tex]\mathbf{b = 6}}[/tex]
Read more about trigonometry ratios at:
https://brainly.com/question/24888715