Respuesta :
Answer:
V = 8963 L
Explanation:
Our strategy here is to realize this problem involves stoichiometric calculation based on the balanced chemical equation for the combustion of octane:
C₈H₁₈ + 25/2 O₂ ⇒ 8 CO₂ + 9 H₂O
From the density of octane we can obtain the number of moles:
D = m/V ⇒ m= D x V = 0.7025 g/mL x ( 1000 mL) = 702.5 g
MW octane = 702.5 g/ 114.23 g/mol = 6.15 mol
Required mol oxygen to react with octane:
6.15 mol octane x 25/2 mol O₂ / mol octane = 76.8 mol O₂
Now mol fraction is given by mol O₂ / total number mol air ⇒
n air = 76.8 mol O₂ / (0.2095 mol O₂ / mol air ) = 366.59 mol air
and from the ideal gas law we can compute the volume of air:
PV = nRT ⇒ V = nRT/P
V = 366.59 mol air x 0.08205 Latm/Kmol x (25+ 273) K/ 1 atm
= 8,963 Lts
Note we treat here air as a compund which is allowed in combustion problems.
Volume of air will be "8968.49 L". A further explanation is below.
Given:
Density,
- 0.7025 g/mL
Volume,
- 1000 mL
Temperature,
- 25°C
Mass of octane,
= [tex]Density\times Volume[/tex]
= [tex]0.7025\times 1000[/tex]
= [tex]702.5 \ g[/tex]
Moles of octane,
= [tex]\frac{702.5}{114.23}[/tex]
= [tex]6.149 \ moles[/tex]
The reaction,
- [tex]2C_8 H_{18} (s)+25O_2 \rightarrow 16CO_2(g)+18 H_2O(g)[/tex]
Moles of oxygen necessary,
= [tex]6.149\times \frac{25}{2}[/tex]
= [tex]76.86 \ moles[/tex]
Now,
The moles of air,
= [tex]\frac{PV}{RT}[/tex]
= [tex]\frac{1.00\times V}{(0.0821\times 298)}[/tex]
= [tex]0.0409 \ V[/tex]
Moles of oxygen will be:
= [tex]0.2095\times 0.0490[/tex]
= [tex]0.00857 \ V[/tex]
hence,
The volume of air will be:
→ [tex]V = \frac{76.86}{0.00857}[/tex]
[tex]= 8968.49 \ L[/tex]
Thus the answer above is right.
Learn more:
https://brainly.com/question/15025147