This is best done with the disk method.
[tex]\sin x=1[/tex] for [tex]x=\pm\frac\pi2[/tex], so [tex]\sin x+1=2[/tex] at these points, and [tex]|\sin x|\le1[/tex] for all [tex]x[/tex] means [tex]0\le\sin x+1\le2[/tex].
Each disk has a radius of [tex]2-(\sin x+1)=1-\sin x[/tex], and contributes a volume of [tex]\pi(1-\sin x)^2\,\mathrm\Delta x[/tex] where [tex]\Delta x[/tex] is the height of each disk.
Then the volume of the solid is
[tex]\displaystyle\pi\int_{-\pi/2}^{\pi/2}(1-\sin x)^2\,\mathrm dx[/tex]
[tex]=\displaystyle\pi\int_{-\pi/2}^{\pi/2}(1-2\sin x+\sin^2x)\,\mathrm dx[/tex]
[tex]=\pi\left(x+2\cos x+\dfrac{x-\sin x\cos x}2\right)\bigg|_{-\pi/2}^{\pi/2}=\boxed{\frac{3\pi^2}2}[/tex]