Answer : The heat required is, 7200 calories.
Explanation :
The process involved in this problem are :
[tex](1):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(2):H_2O(l)(0^oC)\rightarrow H_2O(l)(100^oC)\\\\(3):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)[/tex]
The expression used will be:
[tex]\Delta H=m\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]+m\times \Delta H_{vap}[/tex]
where,
m = mass of ice = 10.0 g
[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]1cal/g^oC[/tex]
[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = [tex]80.0cal/g[/tex]
[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization = [tex]540cal/g[/tex]
Now put all the given values in the above expression, we get:
[tex]\Delta H=10.0g\times 80.0cal/g+[10.0g\times 1cal/g^oC\times (100-0)^oC]+10.0g\times 540cal/g[/tex]
[tex]\Delta H=7200cal[/tex]
Therefore, the heat required is, 7200 calories.