AJ graphs the function f(x)=-(x+2)^(2)-1

part 1 : What mistake did AJ make in the graph?
part 2: Evaluate any two x-values (between -5 and 5) into AJ's function. Show your work. How does your work prove that AJ made a mistake in the graph?

AJ graphs the function fxx221 part 1 What mistake did AJ make in the graph part 2 Evaluate any two xvalues between 5 and 5 into AJs function Show your work How class=

Respuesta :

Answer:

Part 1: AJ reflected over x-axis.

Part 2: [tex](0,-5)[/tex]  and [tex](-1,-2)[/tex]

AJ plotted the graph using the function  [tex]f(x)=(x+2)^{2}-1[/tex] . This resulted the graph to reflect over x-axis

Step-by-step explanation:

Part 1: AJ mistakenly plotted over x-axis, which means he reflected the graph over x-axis.The x-value remains the same. Only the y-values are transformed into its opposite sign.

Part 2:  

Step 1: Plotting any two values for the function [tex]f(x)=-(x+2)^{2}-1[/tex]

Substituting x=0, we get,

[tex]\begin{aligned}y=f(0) &=-(0+2)^{2}-1 \\=&-(2)^{2}-1 \\=&-4-1=-5 \\& y=-5\end{aligned}[/tex]

Substituting x=-1, we get,

[tex]\begin{aligned}y=f(-1) &=-(-1+2)^{2}-1 \\=&-(1)^{2}-1 \\=&-1-1=-2 \\& y=-2\end{aligned}[/tex]

The two x-values for AJ’s function is [tex](0,-5)[/tex]  and [tex](-1,-2)[/tex]

Step 2:

AJ plotted the graph using the function [tex]f(x)=(x+2)^{2}-1[/tex] . This resulted the graph to reflect over x-axis.

ACCESS MORE