The magnitude of the electric field at point a will be 13000 N/C towards [tex]q_{2}[/tex].
Answer: Option C
Explanation:
We know,
The distance between [tex]q_{1}[/tex] and point a = 0.3 m
The distance between [tex]q_{2}[/tex] and point a = 0.2 m
Now,
The electric field on point a due to [tex]q_{1}[/tex] charge,
[tex]E_{1}=k \frac{q_{1}}{(r)^{2}}[/tex]
Where,
[tex]q_{1}[/tex] = 30 nC
r = 0.3 m
The electric field on point a due to [tex]q_{2}[/tex] charge,
[tex]$E_{2}=k \frac{q_{2}}{(r)^{2}}$[/tex]
Where,
[tex]q_{2}[/tex] = 45 n C
r’ = 0.2 m
To find the total electric field exerted on point a due to both of the charges, we need to add [tex]E_{1}[/tex] and [tex]E_{2}[/tex]. Thus, the net electric field of point a,
[tex]E_{n e t}=E_{1}+E_{2}[/tex]
[tex]E_{n e t}=k \frac{q_{1}}{(r)^{2}}+k \frac{q_{2}}{\left(r^{\prime}\right)^{2}}[/tex]
Now, putting all the values, we get;
[tex]E_{\text {net}}=k\left(\frac{30}{(0.3)^{2}}+\frac{45}{(0.2)^{2}}\right)[/tex]
[tex]E_{n e t}=8.99 \times 10^{9}(333.33+1,125)[/tex]
[tex]E_{n e t} \approx 13,110 \frac{N}{C}[/tex]
Hence, the answer will be 13000 N/C directed to [tex]q_{2}[/tex]