Respuesta :

frika

Answer:

[tex]C^{12}_7(3x)^5(-2)^7[/tex]

Step-by-step explanation:

Use binomial expansion formula:

[tex](a+b)^n=\sum \limits _{k=0}^nC^n_ka^{n-k}b^{k}[/tex]

Then

[tex](3x-2)^{12}=\sum \limits_{k=0}^{12}C_k^{12}(3x)^{12-k}(-2)^k[/tex]

In the expansion [tex](3x-2)^{12},[/tex] the term in [tex]x^5[/tex] is determined for

[tex]12-k=5\\ \\-k=5-12\\ \\-k=-7\\ \\k=7,[/tex]

then the coefficient at [tex]x^5[/tex] is

[tex]C^{12}_7(3x)^{12-7}(-2)^7=C^{12}_7(3x)^5(-2)^7[/tex]