Answer:
[tex]\omega=4.2704*10^-^5 rad/s[/tex]
Explanation:
Angular Momentum Formula For atoms=[tex]L_{atom}=0.12Nm_{s}h[/tex]
Where:
m_{s}h is the momentum for one atom (m_s is the spin quantum number)
N is the number of atoms=[tex]\frac{N_{A}*m}{M}[/tex]
Where:
N_A is Avogadro Number
m is the mass of sphere
M is the molar mass of iron
Angular Momentum Formula For atoms will be=[tex]L_{atom}=0.12\frac{N_{A}m}{M} m_{s}h[/tex]
Angular Momentum of Sphere=[tex]L_{sphere}=I\omega[/tex]
where:
[tex]I=\frac{2mR^{2}}{5}[/tex]
So,Angular Momentum of Sphere=[tex]L_{sphere}=\frac{2mR^{2}}{5}\omega[/tex]
Angular Momentum of sphere=Angular Momentum of atoms
[tex]L_{sphere}[/tex]=[tex]L_{atom}[/tex]
[tex]\frac{2mR^{2}}{5}\omega[/tex]=[tex]0.12\frac{N_{A}m}{M} m_{s}h[/tex]
For iron, [tex]m_s =\frac{1}{2}[/tex]. So above equation will become:
[tex]\omega=\frac{0.12*5*N_{A}h}{4*M*R^{2} }[/tex]
Where R=2mm, M=0.0558Kg/mol (Molar Mass of iron),h=Planck's Constant/2π
[tex]\omega=\frac{0.12*5*(6.022*10^{23})(6.63*10^{-34}/2*\pi)}{4*0.0558*(2*10^{-3})^{2}}[/tex]
[tex]\omega=4.2704*10^-^5 rad/s[/tex]