Which of the following is a like radical to RootIndex 3 StartRoot 7x EndRoot?
A. 4 (RootIndex 3 StartRoot 7 x EndRoot)
B. StartRoot 7 x EndRoot
C. x (RootIndex 3 StartRoot 7 EndRoot)
D. 7 StartRoot x EndRoot

Respuesta :

Answer:

A. 4 (RootIndex 3 StartRoot 7 x EndRoot)  or [tex]4(\sqrt[3]{7x})[/tex]

Step-by-step explanation:

Given:

A radical whose value is, [tex]r_1=\sqrt[3]{7x}[/tex]

Now, we need to find the like radical for [tex]r_1[/tex].

Let the like radical be [tex]r_2[/tex].

As per the definition of like radicals, like radicals are those that can be expressed as multiples of each other.

So, if two radicals [tex]r_1\ and\ r_2[/tex] are like radicals, then

[tex]r_1 = n \times r_2 [/tex]

Where, 'n' is a real number.

Here, [tex]r_1=\sqrt[3]{7x}[/tex]

Now, let us check all the options .

Option A:

4 (RootIndex 3 StartRoot 7 x EndRoot) or [tex]r_2=4\sqrt[3]{7x}[/tex]

Now, we observe that [tex]r_2[/tex] is a multiple of [tex]r_1[/tex] because

[tex]r_2=4\times \sqrt[3]{7x}\\\\ r_2=4\times r_1..............(r_1=\sqrt[3]{7x})[/tex]

Therefore, option A is correct.

Option B:

StartRoot 7 x EndRoot or [tex]r_2=\sqrt{7x}[/tex]

As the above radical is square root and not a cubic root, this option is incorrect.

Option C:

x (RootIndex 3 StartRoot 7 EndRoot) or [tex]r_2=x\sqrt[3]{7}[/tex]

As the term inside the cubic root is not same as that of [tex]r_1[/tex], this option is also incorrect.

Option D:

7 StartRoot x EndRoot or [tex]r_2=7\sqrt{x}[/tex]

As the above radical is square root and not a cubic root, this option is incorrect.

Therefore, the like radical is option (A) only.

Answer:

option a

Step-by-step explanation:

on edge

ACCESS MORE