Respuesta :
Answer:
[tex]\text{Average rate of change}=2.50[/tex]
Step-by-step explanation:
We have been given a function [tex]f(x)=4x-x^2[/tex]. We are asked to find average rate of change over the given time intervals of [tex]0.5\leq x\leq 1[/tex].
We will average rate change formula to solve our given problem.
[tex]\text{Average rate of change}=\frac{f(b)-f(a)}{b-a}[/tex]
[tex]\text{Average rate of change}=\frac{f(1)-f(0.5)}{1-0.5}[/tex]
Let us find f(1) and f(0.5) using our given function.
[tex]f(1)=4(1)-(1)^2[/tex]
[tex]f(1)=4-1[/tex]
[tex]f(1)=3[/tex]
[tex]f(0.5)=4(0.5)-(0.5)^2[/tex]
[tex]f(0.5)=2-0.25[/tex]
[tex]f(0.5)=1.75[/tex]
Upon substituting these values in average rate of change formula, we will get:
[tex]\text{Average rate of change}=\frac{3-1.75}{1-0.5}[/tex]
[tex]\text{Average rate of change}=\frac{1.25}{0.5}[/tex]
[tex]\text{Average rate of change}=2.50[/tex]
Therefore, the average rate of change over the interval [tex]0.5\leq x\leq 1[/tex] would be 2.50.