Answer:
The product of 8x(5x−6) is 40x2−48x
The product of (x−3)(5x−6) is 5x2−21x+18
Step-by-step explanation:
Verify each case
case 1) The product of 8x(5x−6) is 40x2−48x
we have
[tex]8x(5x-6)[/tex]
Apply distributive property
[tex]8x(5x)-8x(6)[/tex]
[tex]40x^2-48x[/tex]
Compare
[tex]40x^2-48x=40x^2-48x[/tex] ----> is true
case 2) The product of −4x(2x2+1) is −8x3−5x
we have
[tex]-4x(2x^2+1)[/tex]
Apply distributive property
[tex]-4x(2x^2)-4x(1)[/tex]
[tex]-8x^3-4x[/tex]
Compare
[tex]-8x^3-4x=-8x^3-5x[/tex] -----> is not true
case 3) The product of (x−3)(5x−6) is 5x2−21x+18
we have
[tex](x-3)(5x-6)[/tex]
Apply distributive property
[tex]x(5x)-x(6)-3(5x)+3(6)[/tex]
[tex]5x^2-6x-15x+18[/tex]
[tex]5x^2-21x+18[/tex]
Compare
[tex]5x^2-21x+18=5x^2-21x+18[/tex] ----> is true
case 4) The product of (2x+3)(x2+3x−5) is 2x3+9x2+9x−25
we have
[tex](2x+3)(x^2+3x-5)[/tex]
Apply distributive property
[tex]2x(x^2)+2x(3x)-2x(5)+3(x^2)+3(3x)-3(5)[/tex]
[tex]2x^3+6x^2-10x+3x^2+9x-15[/tex]
[tex]2x^3+9x^2+2x-15[/tex]
Compare
[tex]2x^3+9x^2+2x-15=2x^3+9x^2+9x-25[/tex] ----> is not true