bree009
contestada

Select all the statements that are true.

Question 4 options:

The product of 8x(5x−6) is 40x2−48x


The product of −4x(2x2+1) is −8x3−5x

The product of (x−3)(5x−6) is 5x2−21x+18

The product of (2x+3)(x2+3x−5) is 2x3+9x2+9x−25

Respuesta :

Answer:

The product of 8x(5x−6) is 40x2−48x

The product of (x−3)(5x−6) is 5x2−21x+18

Step-by-step explanation:

Verify each case

case 1) The product of 8x(5x−6) is 40x2−48x

we have

[tex]8x(5x-6)[/tex]

Apply distributive property

[tex]8x(5x)-8x(6)[/tex]

[tex]40x^2-48x[/tex]

Compare

[tex]40x^2-48x=40x^2-48x[/tex] ----> is true

case 2) The product of −4x(2x2+1) is −8x3−5x

we have

[tex]-4x(2x^2+1)[/tex]

Apply distributive property

[tex]-4x(2x^2)-4x(1)[/tex]

[tex]-8x^3-4x[/tex]

Compare

[tex]-8x^3-4x=-8x^3-5x[/tex] -----> is not true

case 3) The product of (x−3)(5x−6) is 5x2−21x+18

we have

[tex](x-3)(5x-6)[/tex]

Apply distributive property

[tex]x(5x)-x(6)-3(5x)+3(6)[/tex]

[tex]5x^2-6x-15x+18[/tex]

[tex]5x^2-21x+18[/tex]

Compare

[tex]5x^2-21x+18=5x^2-21x+18[/tex] ----> is true

case 4)  The product of (2x+3)(x2+3x−5) is 2x3+9x2+9x−25

we have

[tex](2x+3)(x^2+3x-5)[/tex]

Apply distributive property

[tex]2x(x^2)+2x(3x)-2x(5)+3(x^2)+3(3x)-3(5)[/tex]

[tex]2x^3+6x^2-10x+3x^2+9x-15[/tex]

[tex]2x^3+9x^2+2x-15[/tex]

Compare

[tex]2x^3+9x^2+2x-15=2x^3+9x^2+9x-25[/tex] ----> is not true