lizzyz
contestada

please help urgent!!


Drag and drop a statement or reason to each box to complete the proof.


Given: PQ¯¯¯¯¯≅PR¯¯¯¯¯


Prove: ∠Q≅∠R

please help urgentDrag and drop a statement or reason to each box to complete the proofGiven PQPRProve QR class=
please help urgentDrag and drop a statement or reason to each box to complete the proofGiven PQPRProve QR class=

Respuesta :

Answer:

[tex]Q M \cong R M \Rightarrow[/tex] definition of midpoint

[tex]\overline{P M} \cong \overline{P M} \Rightarrow[/tex] Reflexive property of congruence

[tex]\Delta P Q M \cong \Delta P R M \Rightarrow[/tex] SSS congruence postulate

[tex]\angle Q \cong \angle R \Rightarrow[/tex] CPCTC theorem

Step-by-step explanation:

Step 1: Since, M is the midpoint of the line segment QR.  

[tex]\overline{Q M} \cong \overline{R M} \Rightarrow[/tex]  definition of midpoint

Step 2: The reflexive property of congruence states that a line segment or an angle or a shape is always equal to itself.  

[tex]\overline{P M} \cong \overline{P M} \Rightarrow[/tex] Reflexive property of congruence.

Step 3: The SSS congruence postulate states that if three sides of a triangle are equal to three sides of another triangle, then the two triangles are congruent.

[tex]\Delta P Q M \cong \Delta P R M \Rightarrow[/tex]  SSS congruence postulate

Step 4: CPCTC theorem states if two triangles are congruent then the sides and angles are also congruent.

[tex]\angle Q \cong \angle R \Rightarrow[/tex] CPCTC theorem.

Answer:

PQ≅PR Given

Draw PM¯¯¯¯¯¯ so that M is the midpoint of QR¯¯¯¯¯. Two points determine a line.

QM≅RM Definition of midpoint

PM≅PM Reflexive property of congruence

PQM≅PR SSS Congruence Postulate

∠Q≅∠R CPCTC

Step-by-step explanation:

Ver imagen lindsaybootsma05
ACCESS MORE