A rock is thrown upward with the velocity of 27 meters per second from the top of a 43 meter high cliff, and it misses the cliff on the way back down. When will the rock be 8 meters from ground level?

Respuesta :

The rock will be 8 meters from ground level in 6.6 seconds.

Solution:

[tex]h(t) = \frac{-1}{2}gt^2 + v_0t + h_0[/tex]

The value of gravity, [tex]g = 9.8 m/s^2[/tex]

[tex]h(t) = \frac{-1}{2}\times{9.8}t^2 + 27t + 43[/tex]

To find: The time when h(t) = 8 m from ground level

[tex]\Rightarrow-4.9t^2 + 27t + 43 = 8[/tex]

[tex]\Rightarrow-4.9t^2 + 27t + 35 = 0[/tex]

Using quadratic formula: [tex]x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]

[tex]\text { when } a x^{2}+b x+c=0[/tex]

Here, the unknown value x is considered as t. On substituting the values of a as -4.9; b as 27 and c as 35 we get,

[tex]t=\frac{-(27) \pm \sqrt{(27)^{2}-4(-4.9)(35)}}{2(-4.9)}[/tex]

[tex]t=\frac{-27 \pm \sqrt{729+686}}{-9.8}[/tex]

[tex]t=\frac{-27 \pm \sqrt{1415}}{-9.8}[/tex]

Square root of 1415 is 37.61648 which is approximately 37.6

[tex]t=\frac{-27 \pm 37.6}{-9.8}[/tex]

[tex]t=\frac{-27+37.6}{-9.8} \text{ or } t=\frac{-27-37.6}{-9.8}[/tex]

[tex]t=\frac{10.6}{-9.8} \text{ or } t=\frac{-64.6}{-9.8}[/tex]

[tex]t=-1.08163 \text{ or } t=6.5918367[/tex]

On ignoring the negative value since time will be of positive value we get,

[tex]t=6.5918367\approx t=6.6 \text{ seconds }[/tex]

ACCESS MORE

Otras preguntas