Answer:
[tex](a)\ 15\textdegree C\\(b)\ After\ 3\ minutes\ and\ 52.5\ Seconds\ from\ start[/tex]
Step-by-step explanation:
Temperature in the room [tex]=23\textdegree C[/tex]
Decrease in the temperature(outdoors)[tex]=23-15=8\textdegree C[/tex] in [tex]1\ minute[/tex].
Rate of decrease[tex]=8\textdegree C/minute[/tex]
[tex]Let\ after\ x\ minutes\ temperature\ is\ y\\y=23-8x\ \ \ \ y\geq -9\textdegree C[/tex]
(a) After [tex]4\ more\ minutes\ total\ time\ is=1+4=5\ minutes[/tex]
[tex]y=23-5\times 8\\y=-17\\[/tex]
But it is not possible as outdoor temperature is [tex]-9\textdegree C[/tex] so after [tex]-9\textdegree C[/tex] temperature decrease will not occur.
Hence after [tex]4[/tex] more minutes temperature=[tex]-9\textdegree C[/tex]
(b) Let after [tex]t\ minutes[/tex] temperature is [tex]-8\textdegree C[/tex]
Here [tex]x=t,\ y=-8\textdegree C[/tex]
[tex]-8=23-8x\\8x=23+8\\8x=31\\x=\frac{31}{8}\\x=3.875\ minutes=3\ minutes\ and\ 52.5\ seconds[/tex]