Respuesta :
Answer:
After the collision, they move with a speed of 13.57 m/s at 56.30° south of east
Explanation:
Conservation Of Momentum
The total momentum of a system of particles with masses m1,m2,...mn that interact without the action of external forces, is conserved. It means that, being [tex]\vec P[/tex] and [tex]\vec P'[/tex] the initial and final momentums respectively:
[tex]\vec P = \vec P'[/tex]
Or equivalently, for a two-mass system
[tex]m_1\vec v_1+m_2\vec v_2=m_1\vec v_1'+m_2\vec v_2'[/tex]
All the velocities are vectors. Let's express the velocities in magnitude v and direction [tex]\theta[/tex] as [tex](v,\theta)[/tex]. It's rectangular components will be
[tex]v_x=vcos\theta[/tex]
[tex]v_y=vsin\theta[/tex]
The first car is moving east at 21.2 m/s. Its velocity is
[tex]\vec v_1=(21.2,0^o)[/tex]
Recall that East is the zero-degree reference for angles
Expressing in rectangular form:
[tex]\vec v_1=<21.2cos0^o,21.2sin0^o>=<21.2,0>[/tex]
The second car is moving south at 17.5 m/s. Its velocity is
[tex]\vec v_2=(17.5,270^o)[/tex]
[tex]\vec v_2=<17.5cos270^o,17.5sin270^o>=<0,-17.5>[/tex]
The total initial momentum is
[tex]\vec P=m_1\vec v_1+m_2\vec v_2[/tex]
[tex]\vec P=1445<21.2,0>+2625<0,-17.5>[/tex]
[tex]\vec P=<30634,-45937.5>\ Kg.m/s[/tex]
They collide and stick together in a common mass and velocity \vec v', thus
[tex]\vec P'=(m_1+m_2)\vec v'[/tex]
It must be equal to the initial momentum, thus
[tex](m_1+m_2)\vec v'=<30634,-45937.5>\ Kg.m/s[/tex]
Solving for [tex]\vec v'[/tex]
[tex]\displaystyle \vec v'=\frac{<30634,-45937.5>\ Kg.m/s}{m_1+m_2}[/tex]
[tex]\displaystyle \vec v'=\frac{<30634,-45937.5>\ Kg.m/s}{4070}[/tex]
[tex]\displaystyle \vec v'=<7.53,-11.29>\ m/s[/tex]
The magnitude of \vec v' is
[tex]|\vec v'|=\sqrt{7.53^2+(-11.29)^2}=13.57\ m/s[/tex]
The direction angle is
[tex]\displaystyle tan\theta=\frac{-11.29}{7.53}[/tex]
[tex]\displaystyle \theta=-56.30^o[/tex]
After the collision, they move with a speed of 13.57 m/s at 56.30° south of east