Two small spheres with mass 10 gm and charge q, are suspended from a point by threads of length L=0.22m. What is the charge on each sphere if the threads make an angle θ of 15 degrees with the vertical?

Respuesta :

Answer:

[tex]q=1.95*10^{-7}C[/tex]

Explanation:

According to the free-body diagram of the system, we have:

[tex]\sum F_y: Tcos(15^\circ)-mg=0(1)\\\sum F_x: Tsin(15^\circ)-F_e=0(2)[/tex]

So, we can solve for T from (1):

[tex]T=\frac{mg}{cos(15^\circ)}(3)[/tex]

Replacing (3) in (2):

[tex](\frac{mg}{cos(15^\circ)})sin(15^\circ)=F_e[/tex]

The electric force ([tex]F_e[/tex]) is given by the Coulomb's law. Recall that the charge q is the same in both spheres:

[tex](\frac{mg}{cos(15^\circ)})sin(15^\circ)=\frac{kq^2}{r^2}(4)[/tex]

According to pythagoras theorem, the distance of separation (r) of the spheres are given by:

[tex]sin(15^\circ)=\frac{\frac{r}{2}}{L}\\r=2Lsin(15^\circ)(5)[/tex]

Finally, we replace (5) in (4) and solving for q:

[tex]mgtan(15^\circ)=\frac{kq^2}{(2Lsin(15^\circ))^2}\\q=\sqrt{\frac{mgtan(15^\circ)(2Lsin(15^\circ))^2}{k}}\\q=\sqrt{\frac{10*10^{-3}kg(9.8\frac{m}{s^2})tan(15^\circ)(2(0.22m)sin(15^\circ))^2}{8.98*10^{9}\frac{N\cdot m^2}{C^2}}}\\q=1.95*10^{-7}C[/tex]