Answer:
[tex]q=1.95*10^{-7}C[/tex]
Explanation:
According to the free-body diagram of the system, we have:
[tex]\sum F_y: Tcos(15^\circ)-mg=0(1)\\\sum F_x: Tsin(15^\circ)-F_e=0(2)[/tex]
So, we can solve for T from (1):
[tex]T=\frac{mg}{cos(15^\circ)}(3)[/tex]
Replacing (3) in (2):
[tex](\frac{mg}{cos(15^\circ)})sin(15^\circ)=F_e[/tex]
The electric force ([tex]F_e[/tex]) is given by the Coulomb's law. Recall that the charge q is the same in both spheres:
[tex](\frac{mg}{cos(15^\circ)})sin(15^\circ)=\frac{kq^2}{r^2}(4)[/tex]
According to pythagoras theorem, the distance of separation (r) of the spheres are given by:
[tex]sin(15^\circ)=\frac{\frac{r}{2}}{L}\\r=2Lsin(15^\circ)(5)[/tex]
Finally, we replace (5) in (4) and solving for q:
[tex]mgtan(15^\circ)=\frac{kq^2}{(2Lsin(15^\circ))^2}\\q=\sqrt{\frac{mgtan(15^\circ)(2Lsin(15^\circ))^2}{k}}\\q=\sqrt{\frac{10*10^{-3}kg(9.8\frac{m}{s^2})tan(15^\circ)(2(0.22m)sin(15^\circ))^2}{8.98*10^{9}\frac{N\cdot m^2}{C^2}}}\\q=1.95*10^{-7}C[/tex]