Answer:
Acute angle is 45°
Step-by-step explanation:
Given equation of lines are:
[tex]x+\sqrt{3} y=1\\\\\sqrt{3} y=-x+1---(1)\\\\(1-\sqrt{3} )x+(1+\sqrt{3})y=8\\ \\(1+\sqrt{3})y=-(1-\sqrt{3} )x+8---(2)\\\\[/tex]
Line plot of both equations is shown in figure attaches. Red line is for (1) and green is for (2). Angle to be measured is A which is equal to B.
From (1)
[tex]\hat{a}=<1,\sqrt{3}>\\ [/tex]
From(2)
[tex]\hat{b}=<1-\sqrt{3},1+\sqrt{3}>[/tex]
We can find acute angle between two lines as
[tex]cos\theta=\frac{a.b}{|a||b|}---(3)\\\\a.b=(1)(1-\sqrt{3})+(\sqrt{3})(1+\sqrt{3})\\\\a.b=1-\sqrt{3}+\sqrt{3}+3\\\\a.b=4\\\\|a|=\sqrt{(1-0)^{2}+(\sqrt{3}-0)^{2}} \\\\|a|=\sqrt{4} =2\\\\|b|=\sqrt{((1-\sqrt{3})-0)^{2}+((1+\sqrt{3})-0)^{2}} \\\\|b|=\sqrt{8}\\\\[/tex]
Substituting these values in (3)
[tex]cos\theta=\frac{4}{2\sqrt{8}}\\\\cos\theta=\frac{1}{\sqrt{2}}\\\\\theta=45^{o}[/tex]