Answer:
[tex]\vec{F}_x = \frac{2KQqa}{(a^2 + y^2)^{3/2}} \^x[/tex]
Explanation:
The Coulomb's Law gives the force by the charges:
[tex]\vec{F} = K\frac{q_1q_2}{r^2}\^r[/tex]
Let us denote the positon of the charge q on the y-axis as 'y'.
The force between 'Q' and'q' is
[tex]F_1 = K\frac{Qq}{x^2 + y^2}\\F_1_x = F_1\cos(\theta)[/tex]
where Θ is the angle between [tex]F_1[/tex] and x-axis.
[tex]F_1_x = K\frac{Qq}{x^2 + y^2}(\frac{x}{\sqrt{x^2 + y^2}}) = \frac{KQqa}{(a^2 + y^2)^{3/2}}[/tex]
whereas
[tex]F_2_x = K\frac{-Qq}{a^2 + y^2}(-\frac{a}{\sqrt{a^2 + y^2}}) = \frac{KQqa}{(a^2 + y^2)^{3/2}}[/tex]
Finally, the x-component of the net force is
[tex]\vec{F}_x = \frac{2KQqa}{(a^2 + y^2)^{3/2}} \^x[/tex]