Respuesta :

Answer:

The solved given expression is

[tex]\frac{-3^4x-3^4}{(-3^2)^3}=-\frac{(x+1)}{9}[/tex]

Step-by-step explanation:

Given expression is [tex]\frac{-3^4x-3^4}{(-3^2)^3}[/tex]

To solving the given expression as below :

[tex]\frac{-3^4x-3^4}{(-3^2)^3}[/tex]

[tex]\frac{-3^4x-3^4}{(-3^2)3}=\frac{3^4(-x-1)}{(-3^2)3}[/tex]

[tex]=\frac{-3^4(x+1)}{(3^2)3}[/tex]  ( by using the property [tex](a^m)^n=a^{mn}[/tex] )

[tex]=\frac{-3^4(x+1)}{3^6}[/tex]

[tex]=\frac{-(x+1)}{3^6.3^{-4}}[/tex]  ( by using the property [tex]a^m=\frac{1}{a^{-m}}[/tex] )

[tex]=\frac{-(x+1)}{3^{6-4}}[/tex] ( by using the property [tex]a^m.a^n=a^{m+n}[/tex]  )

[tex]=-\frac{(x+1)}{3^2}[/tex]

[tex]=-\frac{(x+1)}{9}[/tex]

Therefore [tex]\frac{-3^4x-3^4}{(-3^2)^3}=-\frac{(x+1)}{9}[/tex]

Therefore the solved given expression is

[tex]\frac{-3^4x-3^4}{(-3^2)^3}=-\frac{(x+1)}{9}[/tex]

ACCESS MORE