Respuesta :

Answer:

[tex]g'_h=1.096\times 10^{-5}\ m.s^{-2}[/tex]

Explanation:

We know that the gravity on the surface of the moon is,

  • [tex]g'=\frac{g}{6}[/tex]
  • [tex]g'=1.63\ m.s^{-2}[/tex]

Gravity at a height h above the surface of the moon will be given as:

[tex]g'_h=\frac{G.m}{(r+h)^2}[/tex] ..........................(1)

where:

G = universal gravitational constant

m = mass of the moon

r = radius of moon

We have:

  • [tex]G=6.67\times 10^{-11}\ m^3.s^{-2}.kg^{-1}[/tex]
  • [tex]m=7.35\times 10^{22}\ kg[/tex]
  • [tex]r=1.74\times 10^6\ m[/tex]
  • [tex]h=384.4\times 10^6\ m[/tex] is the distance between the surface of the earth and the moon.

Now put the respective values in eq. (1)

[tex]g'_h=\frac{6.67\times 10^{-11}\times 7.35\times 10^{22}}{(1.74\times 10^6+384.4\times 10^6)^2}[/tex]

[tex]g'_h=1.096\times 10^{-5}\ m.s^{-2}[/tex] is the gravity on the moon the earth-surface.

ACCESS MORE