Answer:
Explanation:
Given
initial temperature [tex]T_1=78^{\circ}C\approx 351\ K[/tex]
initial radius [tex]r_1=1\ cm[/tex]
final temperature [tex]T_2=888^{\circ}C\approx 1161\ K[/tex]
As the gas heated at constant pressure
[tex]P_1=P_2[/tex]
using [tex]PV=nRT[/tex]
thus
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
[tex]\frac{\frac{4\pi r_1^3}{3}}{T_1}=\frac{\frac{4\pi r_2^3}{3}}{T_2}[/tex]
cancel out common terms
[tex]\frac{r_1^3}{T_1}=\frac{r_2^3}{T_2}[/tex]
[tex](\frac{r_1}{r_2})^3=\frac{T_1}{T_2}[/tex]
[tex](\frac{1}{r_2})^3=\frac{351}{1161}[/tex]
[tex]\frac{1}{r_2}=0.6711[/tex]
[tex]r_2=1.489\ cm[/tex]