Which is equivalent to (4xy – 3z)2, and what type of special product is it?

16x2y2 + 9z2, the difference of squares
16x2y2 + 9z2, a perfect square trinomial
16x2y2 – 24xyz + 9z2, the difference of squares
16x2y2 – 24xyz + 9z2, a perfect square trinomial

Respuesta :

the last choice is right sure because this is a perfect square trinomial

(4xy -3z)^2 = 16x^2y^2 -24xyz +9z^2

hope this will help you 

Answer:

Option D is correct

[tex]16x^2y^2-24xyz+9z^2[/tex]

a perfect square trinomial

Step-by-step explanation:

Using a perfect square trinomial:

[tex](a-b)^2 = a^2-2ab+b^2[/tex]          ....[1]

Given the expression:

[tex](4xy-3z)^2[/tex]

let a = 4xy and b = 3z

then;

Substitute in [1] we have

[tex](4xy-3z)^2 = (4xy)^2-2(4xy)(3z)+(3z)^2[/tex]

Simplify:

[tex](4xy-3z)^2 =16x^2y^2-24xyz+9z^2[/tex]

Therefore, the expression which is equivalent to [tex](4xy-3z)^2[/tex] is [tex]16x^2y^2-24xyz+9z^2[/tex] and type of special product is:  perfect square trinomial

ACCESS MORE