Respuesta :

To answer the problem, determine first the common difference by,
 
                                     d = (a18 - a1) / (18 - 1)
 
                                     d = ( 95 - -7) / (18 - 1) = 6

To solve for the 35th term
 
                                      an = a1 + (n - 1)d
      
                                     a35 = -7 + (35 - 1)6 = 197

Therefore, the 35th term is 197. 



Answer:

Option (b) is correct.

35th term of an arithmetic sequence is 197.

Step-by-step explanation:

Given : [tex]a_1 =-7\ and\ a_{18}=95[/tex]        

We have to find the 35 term of  an arithmetic sequence whose [tex]a_1 =-7 \ and\ a_{18}=95[/tex]    

For an Arithmetic sequence the general term is given as [tex]a_n=a+(n-1)d[/tex],

where a is first term ,

n is number of term

d is common difference,

Thus, the 18th term  [tex]a_{18}=a+(18-1)d[/tex]

We have  [tex]a_{18}=95[/tex] , solving for d , we have,

[tex]a_{18}=a+(18-1)d=95[/tex]

[tex]95=a+17d[/tex]

Thus, [tex]\Rightarrow 95=-7+17d[/tex]

[tex]\Rightarrow 95+7=17d[/tex]

[tex]\Rightarrow 102=17d[/tex]

Divide both side by 17, we get,

[tex]\Rightarrow d=6[/tex]

Now,  35th term of an arithmetic sequence is given by,

[tex]\Rightarrow a_{35}=a+(35-1)d[/tex]

Substitute, a and d , we get,

[tex]\Rightarrow a_{35}=-7+34(6)[/tex]

[tex]\Rightarrow a_{35}=-7+204[/tex]

[tex]\Rightarrow a_{35}=197[/tex]

Thus, 35th term of an arithmetic sequence is 197.

Option (b) is correct.

ACCESS MORE