Respuesta :
we know that
The simple interest formula is equal to
[tex] F=P*(1+n*r) [/tex]
where
F is the future value
P is the present value
n is the number of years
r is the annual interest rate in decimal
In this problem
we have
[tex] P= [/tex]$[tex] 3,900 [/tex]
[tex] r=7.83 [/tex]% -----> [tex] r=0.0783 [/tex]
[tex] F= [/tex]$[tex] 10,000 [/tex]
Find the value of n
[tex] F=P*(1+n*r)\\ \\ \frac{F}{P} =1+n*r\\ \\ n=\frac{(\frac{F}{P}-1)}{r} \\ \\ n=\frac{(\frac{10,000}{3,900}-1)}{0.0783}\\ \\ n=19.98 years [/tex]
therefore
the answer is the option
[tex] c. 20 years [/tex]
Answer: C (20 Years)
Step-by-step explanation:
100% on edge 2022