Respuesta :
Hello,
x^5-10^5=(x-10)(x^4+10x^3+100x^2+1000x+10000)
=========================================
x^5-10^5=(x-10)(x^4+10x^3+100x^2+1000x+10000)
=========================================
Answer:
[tex] x^4+10x^3+100x^2+1000x+1000[/tex]
Step-by-step explanation:
Given : [tex]x^5 − 10^5[/tex]
To Find: If the polynomial [tex]x^5 − 10^5[/tex] can be split as the product of the polynomials x − 10 and a, what is a?
Solution:
[tex](x-10)(a)=x^5 − 10^5[/tex]
[tex]a=\frac{x^5 − 10^5}{x-10}[/tex]
Since we know that:
[tex]Dividend = (Divisor \times Quotient)+Remainder[/tex]
[tex]x^5 -10^5= (x-10 \times x^4)+(10x^4-10^5)[/tex]
[tex]x^5-10^5= (x-10 \times x^4+10x^3)+(100x^3-10^5)[/tex]
[tex]x^5-10^5= (x-10 \times x^4+10x^3+100x^2)+(1000x^2-10^5)[/tex]
[tex]x^5-10^5= (x-10 \times x^4+10x^3+100x^2+1000x)+(10000x-10^5)[/tex]
[tex]x^5-10^5= (x-10 \times x^4+10x^3+100x^2+1000x+1000)+0[/tex]
So, a = [tex] x^4+10x^3+100x^2+1000x+1000[/tex]
Hence the value of a is [tex] x^4+10x^3+100x^2+1000x+1000[/tex]