Respuesta :

caylus
Hello,

x^5-10^5=(x-10)(x^4+10x^3+100x^2+1000x+10000)
=========================================

Answer:

[tex] x^4+10x^3+100x^2+1000x+1000[/tex]

Step-by-step explanation:

Given : [tex]x^5 − 10^5[/tex]

To Find: If the polynomial [tex]x^5 − 10^5[/tex] can be split as the product of the polynomials  x − 10 and a, what is a?

Solution:

[tex](x-10)(a)=x^5 − 10^5[/tex]

[tex]a=\frac{x^5 − 10^5}{x-10}[/tex]

Since we know that:

[tex]Dividend = (Divisor \times Quotient)+Remainder[/tex]

[tex]x^5 -10^5= (x-10 \times x^4)+(10x^4-10^5)[/tex]

[tex]x^5-10^5= (x-10 \times x^4+10x^3)+(100x^3-10^5)[/tex]

[tex]x^5-10^5= (x-10 \times x^4+10x^3+100x^2)+(1000x^2-10^5)[/tex]

[tex]x^5-10^5= (x-10 \times x^4+10x^3+100x^2+1000x)+(10000x-10^5)[/tex]

[tex]x^5-10^5= (x-10 \times x^4+10x^3+100x^2+1000x+1000)+0[/tex]

So, a = [tex] x^4+10x^3+100x^2+1000x+1000[/tex]

Hence  the value of a is  [tex] x^4+10x^3+100x^2+1000x+1000[/tex]