What are the domain, range, and asymptote of h(x) = 2x + 4? domain: {x | x > 0}; range: {y | y is a real number}; asymptote: y = 0 domain: {x | x > –4}; range: {y | y is a real number}; asymptote: y = –4 domain: {x | x is a real number}; range: {y | y > 0}; asymptote: y = 0 domain: {x | x is a real number}; range: {y | y > 0}; asymptote: y = –4

Respuesta :

frika

Consider the function [tex]y=2^{x+4}.[/tex] First, note that parent function [tex]y=2^x[/tex] has

  • the domain [tex]x\in (-\infty,\infty)[/tex] (all real numbers);
  • the range [tex]y>0[/tex] (all positive real numbers);
  • the asymptote [tex]y=0[/tex] (horizontal line).

The graph of the function [tex]y=2^{x+4}[/tex] can be obtained from the parent function using translation 4 units to the left. This translation doesn't change the domain, the range and the asymptote of the parent function.

Answer: correct choice is C

Answer:  

Option 3 is correct.

[tex]D=(-\infty,\infty)[x|x\in {R}][/tex]

[tex]R=(0,\infty)[y|y>0][/tex]

y=0 is the asymptote.  

Step-by-step explanation:

Given : The function [tex]h(x) = 2^{x + 4}[/tex]

To find : The domain, range, and asymptote of the given function.

Solution :

The given function [tex]h(x) = 2^{x + 4}[/tex] is an exponential function.

Domain is where the function is defined.

Therefore, [tex]D=(-\infty,\infty)[x|x\in {R}][/tex]

The range is the set of values that correspond with the domain.

At x tends to [tex]-\infty[/tex] function tends to zero.

At x tends to [tex]\infty[/tex] function tends to  [tex]\infty[/tex]

Therefore, [tex]R=(0,\infty)[y|y>0][/tex]

Exponential functions have a horizontal asymptote.

The equation of the horizontal asymptote is  y=0.

Therefore, Option 3 is correct.