Respuesta :
Consider the function [tex]y=2^{x+4}.[/tex] First, note that parent function [tex]y=2^x[/tex] has
- the domain [tex]x\in (-\infty,\infty)[/tex] (all real numbers);
- the range [tex]y>0[/tex] (all positive real numbers);
- the asymptote [tex]y=0[/tex] (horizontal line).
The graph of the function [tex]y=2^{x+4}[/tex] can be obtained from the parent function using translation 4 units to the left. This translation doesn't change the domain, the range and the asymptote of the parent function.
Answer: correct choice is C
Answer:
Option 3 is correct.
[tex]D=(-\infty,\infty)[x|x\in {R}][/tex]
[tex]R=(0,\infty)[y|y>0][/tex]
y=0 is the asymptote.
Step-by-step explanation:
Given : The function [tex]h(x) = 2^{x + 4}[/tex]
To find : The domain, range, and asymptote of the given function.
Solution :
The given function [tex]h(x) = 2^{x + 4}[/tex] is an exponential function.
Domain is where the function is defined.
Therefore, [tex]D=(-\infty,\infty)[x|x\in {R}][/tex]
The range is the set of values that correspond with the domain.
At x tends to [tex]-\infty[/tex] function tends to zero.
At x tends to [tex]\infty[/tex] function tends to [tex]\infty[/tex]
Therefore, [tex]R=(0,\infty)[y|y>0][/tex]
Exponential functions have a horizontal asymptote.
The equation of the horizontal asymptote is y=0.
Therefore, Option 3 is correct.