Respuesta :
2x³ - 5x² + 4x - 10
2x³ + 4x and -5x² - 10
2x(x² + 2) - 5(x² + 2)
(2x - 5)(x² + 2)
The common binomial factor between the two groups after their gcfs have been factored is x² + 2
2x³ + 4x and -5x² - 10
2x(x² + 2) - 5(x² + 2)
(2x - 5)(x² + 2)
The common binomial factor between the two groups after their gcfs have been factored is x² + 2
Answer:
The common binomial factor between the two groups after their gcf have been factored is [tex]x^2+2[/tex]
Step-by-step explanation:
Given : The polynomial [tex]2x^3-5x^2+4x-10[/tex] is split into two groups [tex]2x^3+4x[/tex] and [tex]-5x^2-10[/tex] the gcf of each group is then figured out.
To find : what is the common binomial factor between the two groups after their gcf have been factored
Solution : The polynomial [tex]2x^3-5x^2+4x-10[/tex] split into two groups
First group - [tex]2x^3+4x[/tex]
Second group - [tex]-5x^2-10[/tex]
[tex]2x^3-5x^2+4x-10=(2x^3+4x)+(-5x^2-10)[/tex]
There is a gcf of 2x in first grouping and -5 in second grouping
[tex]=2x(x^2+2)-5(x^2+2)[/tex]
The another common factor between two terms is [tex]x^2+2[/tex]
[tex]=(2x-5)(x^2+2)[/tex]
The common binomial factor between the two groups after their gcf have been factored is [tex]x^2+2[/tex].