Respuesta :

(6,(31pi/180)+2 n pi) (-6,(31pi/180)+2 n pi)

Answer:

All polar coordinates of point P = (6, 31°) are [tex]P=(6,\frac{31\pi}{180}+2n\pi)[/tex] and [tex]P=(-6,\frac{31\pi}{180}+(2n+1)\pi)[/tex] where, n is an integer.

Step-by-step explanation:

The given polar coordinates of a point are

[tex]P=(6,31^{\circ})[/tex]

If a point is defined as

[tex]P=(r,\theta)[/tex]

Where, θ is in radian, then the polar coordinates of that points are

[tex](r,\theta)=(r,\theta+2n\pi)[/tex]

[tex](r,\theta)=(-r,\theta+(2n+1)\pi)[/tex]

Where, n is an integer.

The given point in radian form is

[tex]P=(6,31\times \frac{\pi}{180})[/tex]

[tex]P=(6,\frac{31\pi}{180})[/tex]

All polar coordinates of point P = (6, 31°) are

[tex]P=(6,\frac{31\pi}{180}+2n\pi)[/tex]

[tex]P=(-6,\frac{31\pi}{180}+(2n+1)\pi)[/tex]

Where, n is an integer.

ACCESS MORE