Respuesta :
Answer:
All polar coordinates of point P = (6, 31°) are [tex]P=(6,\frac{31\pi}{180}+2n\pi)[/tex] and [tex]P=(-6,\frac{31\pi}{180}+(2n+1)\pi)[/tex] where, n is an integer.
Step-by-step explanation:
The given polar coordinates of a point are
[tex]P=(6,31^{\circ})[/tex]
If a point is defined as
[tex]P=(r,\theta)[/tex]
Where, θ is in radian, then the polar coordinates of that points are
[tex](r,\theta)=(r,\theta+2n\pi)[/tex]
[tex](r,\theta)=(-r,\theta+(2n+1)\pi)[/tex]
Where, n is an integer.
The given point in radian form is
[tex]P=(6,31\times \frac{\pi}{180})[/tex]
[tex]P=(6,\frac{31\pi}{180})[/tex]
All polar coordinates of point P = (6, 31°) are
[tex]P=(6,\frac{31\pi}{180}+2n\pi)[/tex]
[tex]P=(-6,\frac{31\pi}{180}+(2n+1)\pi)[/tex]
Where, n is an integer.