The rectangle ABCD is centered at the origin. C has the coordinates (w, –v). Determine the length of a diagonal of ABCD. A.[tex]2 \sqrt{w^2+v^2}[/tex] B.[tex] 4\sqrt{w^2+v^2} [/tex] C.2w+2v D.2w+4v
Sides of the rectangle ABCD are: 2 w and 2 v. The length of a diagonal: [tex] \sqrt{(2w)^{2}+(2v)^{2} } = \sqrt{4w^{2} +4v ^{2} } = \\ \sqrt{4(w^{2} +v^{2} )}=2 \sqrt{w^{2} +v^{2} } [/tex] Answer: A)