Answer:
Anna is incorrect.
Step-by-step explanation:
Find lengths of diagonals SQ and OM.
1. Consider right triangle SQR. By the Pythagorean theorem,[tex]SQ^2=SR^2+RQ^2\\ \\SQ^2=14^2+7^2\\ \\SQ^2=196+49\\ \\SQ^2=245\\ \\SQ=\sqrt{245}=7\sqrt{5}\ units[/tex]
2. Consider right triangle OML. By the Pythagorean theorem,
[tex]OM^2=OL^2+LM^2\\ \\OM^2=7^2+7^2\ [\text{In square LMNO, side } OL \text{has the same length as side }LM]\\ \\OM^2=49+49\\ \\OM^2=98\\ \\OM=\sqrt{98}=7\sqrt{2}\ units[/tex]
Since [tex]7\sqrt{5}\neq 2\cdot 7\sqrt{2}=7\sqrt{8},[/tex] diagonal SQ is not two times diagonal OM. Thus, Anna is incorect.