Respuesta :

Answer:

For given polynomial [tex]P(a)=a^3+2a^2-3a+5=41[/tex] and when a=3 is

[tex]P(3)=41[/tex]

Step-by-step explanation:

Given polynomial is [tex]P(x)=x^3+2x^2-3x+5[/tex]

Remainder Theorem:

To evaluate the function f(x) for a given number "a" you can divide that function by x - a and your remainder will be equal to f(a). Note that the remainder theorem only works when a function is divided by a linear polynomial, which is of the form x + number or x - number.

By using synthetic division for given polynomial [tex]P(x)=x^3+2x^2-3x+5[/tex] and factor is (x-a)    (here x-3 is a factor given)

_3|    1      2       -3         5

        0     3       15       36

      ___________________

         1      5       12      | 41

Given polynomial can be written as

[tex]P(a)=a^3+2a^2-3a+5[/tex]

To find P(a):

[tex]P(a)=a^3+2a^2-3a+5[/tex]

put a=3

[tex]P(3)=3^3+2(3)^2-3(3)+5[/tex]

[tex]P(3)=27+18-9+5[/tex]

[tex]P(3)=41[/tex]

Therefore for given polynomial [tex]P(a)=a^3+2a^2-3a+5=41[/tex] when a=3 is  [tex]P(3)=41[/tex]