Which function has a domain of x 25 and a range of y s3?
g= x-5+3
9 = x+5 -3
y=-x-5+3
y=-x+5 -3
![Which function has a domain of x 25 and a range of y s3 g x53 9 x5 3 yx53 yx5 3 class=](https://us-static.z-dn.net/files/d60/c4e686815b6ad02b54fdd30c6686e089.png)
Answer:
[tex]y = - \sqrt{x - 5} + 3[/tex]
Step-by-step explanation:
The function [tex]y = - \sqrt{x - 5} + 3[/tex] has a domain x ≥ 5.
This is because the function remains real for (x - 5) ≥ 0 as negative within the square root is imaginary.
Hence, (x - 5) ≥ 0
⇒ x ≥ 5
Now, for all x values that are greater than equal to 5 the value of [tex]- \sqrt{x - 5}[/tex] will be negative.
So, [tex]- \sqrt{x - 5} \leq 0[/tex]
⇒ [tex]- \sqrt{x - 5} + 3 \leq 3[/tex]
⇒ y ≤ 3
Therefore, the range of the function is y ≤ 3. (Answer)