Answer:
1.) 0.2828
2.) 0.1414
3.) Option b
4.) Option a
5.) 0.2763
Step-by-step explanation:
1.)
E(4X) = 4 * E(X) = 4 * 8 = 32
[tex]Var(4X)=4^{2} *Var(X)=16*Var(X)[/tex]
[tex]SD(4X)=\sqrt{Var(4X)} =4*SD(X)=4*\sqrt{0.005} =4*0.0707=0.2828[/tex]
2.)
[tex]E(X_{1}+X_{2}+X_{3}+X_{4})=E(X_{1})+E(X_{2})+E(X_{3})+E(X_{4})=8+8+8+8=32[/tex]
[tex]Var(X_{1}+X_{2}+X_{3}+X_{4})=Var(X_{1})+Var(X_{2})+Var(X_{3})+Var(X_{4})=0.0005+0.0005+0.0005+0.0005=0.02[/tex]
[tex]SD(X_{1}+X_{2}+X_{3}+X_{4})=\sqrt{0.02} =0.1414[/tex]
3.)
SD(4X) = 0.2828 > 0.1414
SInce SD(4X) > [tex]SD(X_{1}+X_{2}+X_{3}+X_{4});X_{1}+X_{2}+X_{3}+X_{4}[/tex] is more precise representation of total kenght. Hence it is better representation.
So the answer is the option b).
4.)
Since n=100 > 30, Xbar will be normal.
So the answer is the option a) Normal.
5.)
Since nµ is the expected value of sample total, i.e., nXbar, the required probability
= P(|nXbar - nµ|≤ 0.25), where n = 100 and µ = 8.00
= P[{(|nXbar - nµ|)/(σ√n)} ≤ {0.25/(σ√n)}]
= P[|Z| ≤ {0.25/(√0.005)√100}]
= P(|Z| ≤ 0.3535)
= P(-0.3535 < Z < 0.3535)
= P(Z < 0.3535) - P(Z < - 0.3535)
= 0.6381 – 0.3618 (from Z-distribution table)
= 0.2763
Hope this helps!