Respuesta :
Answer:
The correct answer is option E.
Explanation:
For wavelength to be minimum, energy would be maximum, i.e the electron will jump to infinite level.
Using Rydberg's Equation:
[tex]\frac{1}{\lambda}=R_H\times Z^2\left(\frac{1}{n_f^2}-\frac{1}{n_i^2} \right )[/tex]
Where,
[tex]\lambda[/tex] = Wavelength of radiation
[tex]R_H=1.097\times 10^7 m^{-1}[/tex] = Rydberg's Constant
[tex]n_f[/tex] = Higher energy level
[tex]n_i[/tex]= Lower energy level
Z = atomic number
For hydrogen , Z = 1
The wavelength of light associated with the n = 2 to n = 1 electron transition in the hydrogen spectrum= [tex]\lambda =1.216\times 10^{-7} m[/tex]
Putting the values, in above equation, we get
[tex]\frac{1}{\lambda}=R_H\times 1^2\left(\frac{1}{(1)^2}-\frac{1}{(2)^2} \right )[/tex]
[tex]\frac{1}{\lambda}=R_H\times \frac{3}{4}[/tex]..[1]
For [tex]Li^{2+}[/tex],
Z = 3
The wavelength of light associated with the n = 2 to n = 1 electron transition in the lithium ion = [tex]\lambda '=?[/tex]
Putting the values, in above equation, we get
[tex]\frac{1}{\lambda '}=R_H\times 3^2\left(\frac{1}{(1)^2}-\frac{1}{(2)^2} \right )[/tex]
[tex]\frac{1}{\lambda '}=R_H\times 9\times \frac{3}{4}[/tex]..[2]
Dividing [1] and [2]
[tex]\frac{\frac{1}{\lambda }}{\frac{1}{\lambda '}}=\frac{R_H\times \frac{3}{4}}{R_H\times 9\times \frac{3}{4}}[/tex]
[tex]\lambda '=\frac{1}{9}\times \lambda [/tex]
The coefficient required to be multiplied with wavelength of transition given for hydrogen spectrum to obtain the wavelength associated with the same electron transition in the [tex]Li^{2+}[/tex] ion is 1/9.