Answer :
(a) The energy is, [tex]4.088\times 10^{-19}J[/tex]
(b) The wavelength (in nm) is, [tex]4.862\times 10^2nm[/tex]
Explanation :
The general formula for the wavelength of spectral line emitted by a hydrogen atom, when it makes a transition from [tex]n_2[/tex] shell to [tex]n_1[/tex] shell is,
[tex]\frac{1}{\lambda}=R_H[\frac{1}{(n_1)^2}-\frac{1}{(n_2)^2}][/tex]
where,
[tex]\lambda[/tex] = wavelength
Rydberg's Constant = [tex]R_H=1.097\times 10^7m^{-1}[/tex]
In this, [tex]n_1=2[/tex] and [tex]n_2=4[/tex]
[tex]\frac{1}{\lambda}=(1.097\times 10^7)\times [\frac{1}{(2)^2}-\frac{1}{(4)^2}][/tex]
[tex]\lambda=4.862\times 10^{-7}m=4.862\times 10^2nm[/tex]
conversion used : [tex](1m=10^9nm)[/tex]
Now we have to calculate the energy.
Formula used :
[tex]E=\frac{hc}{\lambda}[/tex]
[tex]\lambda[/tex] = Wavelength = [tex]4.862\times 10^{-7}m[/tex]
E = energy = ?
c = speed of light = [tex]3\times 10^8m/s[/tex]
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
Now put all the given values in the above formula, we get:
[tex]E=\frac{(6.626\times 10^{-34}Js)\times (3\times 10^8m/s)}{4.862\times 10^{-7}m}[/tex]
[tex]E=4.088\times 10^{-19}J[/tex]
Therefore, the energy is [tex]4.088\times 10^{-19}J[/tex]