Respuesta :

Answer:

[tex]\int _{-2}^07x^2+7xdx=\frac{14}{3}[/tex]

Step-by-step explanation:

The definite integral of a continuous function f over the interval [a,b] denoted by [tex]\int\limits^b_a {f(x)} \, dx[/tex], is the limit of a Riemann sum as the number of subdivisions approaches infinity. That is,

[tex]\int\limits^b_a {f(x)} \, dx=\lim_{n \to \infty} \sum_{i=1}^{n}\Delta x \cdot f(x_i)[/tex]

where [tex]\Delta x = \frac{b-a}{n}[/tex] and [tex]x_i=a+\Delta x\cdot i[/tex]

To evaluate the integral

[tex]\int\limits^{0}_{-2} {7x^{2}+7x } \, dx[/tex]

you must:

Find [tex]\Delta x[/tex]

[tex]\Delta x = \frac{b-a}{n}=\frac{0+2}{n}=\frac{2}{n}[/tex]

Find [tex]x_i[/tex]

[tex]x_i=a+\Delta x\cdot i\\x_i=-2+\frac{2i}{n}[/tex]

Therefore,

[tex]\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} f(-2+\frac{2i}{n})[/tex]

[tex]\int\limits^{0}_{-2} {7x^{2}+7x } \, dx=\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})[/tex]

[tex]\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7[(-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})]\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})[/tex][tex]\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} 4-\frac{8i}{n}+\frac{4i^2}{n^2} -2+\frac{2i}{n}\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2[/tex]

[tex]\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2\\\\\lim_{n \to \infty}\frac{14}{n}[ \sum_{i=1}^{n} \frac{4i^2}{n^2}-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}2]\\\\\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\sum_{i=1}^{n}i^2 -\frac{6}{n}\sum_{i=1}^{n}i+\sum_{i=1}^{n}2][/tex]

We can use the facts that

[tex]\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}[/tex]

[tex]\sum_{i=1}^{n}i=\frac{n(n+1)}{2}[/tex]

[tex]\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{6}{n}\cdot  \frac{n(n+1)}{2}+2n]\\\\\lim_{n \to \infty}\frac{14}{n}[-n+\frac{2\left(n+1\right)\left(2n+1\right)}{3n}-3]\\\\\lim_{n \to \infty}\frac{14\left(n^2-3n+2\right)}{3n^2}[/tex]

[tex]\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(\frac{n^2-3n+2}{n^2}\right)\\\\\mathrm{Divide\:by\:highest\:denominator\:power:}\:1-\frac{3}{n}+\frac{2}{n^2}\\\\\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)\\\\\frac{14}{3}\left(\lim _{n\to \infty \:}\left(1\right)-\lim _{n\to \infty \:}\left(\frac{3}{n}\right)+\lim _{n\to \infty \:}\left(\frac{2}{n^2}\right)\right)\\\\\frac{14}{3}\left(1-0+0\right)\\\\\frac{14}{3}[/tex]

Thus,

[tex]\int _{-2}^07x^2+7xdx=\frac{14}{3}[/tex]

ACCESS MORE
EDU ACCESS