Answer:D
Explanation:
If Q is the total charge on the sphere then
charge density [tex]\rho =\frac{Q}{\frac{4}{3}\pi R^3}[/tex]
Charge enclosed up to [tex]r=\frac{R}{4}[/tex]
[tex]q_{enclosed}=\frac{Q}{\frac{4}{3}\pi R^3}\times \frac{4}{3}\pi (\frac{R}{4})^3[/tex]
[tex]q_{enclosed}=\frac{Q}{64}[/tex]
Applying Gauss law
[tex]EA=\frac{q_{enclosed}}{\epsilon }[/tex]
[tex]E=\frac{\frac{Q}{64}}{4\pi (\frac{R}{4})^2}[/tex]
[tex]E=\frac{1}{4}\times \frac{Q}{4\pi \epsilon }[/tex]
and Electric field at [tex]r=\frac{R}{4}[/tex]
[tex]E_0=\frac{1}{4}\times \frac{Q}{4\pi \epsilon }[/tex]
at [tex]r=4 R[/tex]
charge enclosed is Q
applying Gauss law
[tex]E\cdot A=\frac{q_{enclosed}}{\epsilon }[/tex]
[tex]E=\frac{q_{enclosed}}{4\pi (4R)^2\epsilon }[/tex]
[tex]E=\frac{1}{4}\times \frac{Q}{4\pi \epsilon }\times \frac{1}{4}[/tex]
[tex]E=\frac{E_0}{4}[/tex]