A proton is projected toward a fixed nucleus of charge +Ze with velocity vo. Initially the two particles are very far apart. When the proton is a distance R from the nucleus its velocity has decreased to 1/2vo.
How far from the nucleus will the proton be when its velocity has dropped to 1/4vo?
4/5 R
1/4 R
1/2 R
1/16 R

Respuesta :

Answer:

[tex]R_f=\dfrac{4}{5}R[/tex]

Explanation:

Here, the kinetic and potential energy is conserved

[tex]K_f-K_i=U_f-U_i\\\Rightarrow \dfrac{1}{2}mv_i^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{r}\\\Rightarrow \dfrac{1}{2}m(\dfrac{1}{2}v_f)^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{R}[/tex]

For the second case

[tex]K_f-K_i=U_f-U_i\\\Rightarrow \dfrac{1}{2}mv_i^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{r}\\\Rightarrow \dfrac{1}{2}m(\dfrac{1}{4}v_f)^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{R_f}[/tex]

Subtract the equations we get

[tex]\dfrac{1}{2}m(\dfrac{1}{2}v_f)^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{R}\\ \dfrac{1}{2}m(\dfrac{1}{4}v_f)^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{R_f}[/tex]

[tex]\\\Rightarrow \dfrac{1}{4}mv_f^2-mv_f^2=\dfrac{1}{2\pi \epsilon}\dfrac{q_1q_2}{R}\\ \dfrac{1}{16}mv_f^2-mv_f^2=\dfrac{1}{2\pi \epsilon}\dfrac{q_1q_2}{R_f}\\\Rightarrow -\dfrac{3}{4}mv_f^2=\dfrac{1}{2\pi \epsilon}\dfrac{q_1q_2}{R}\\ -\dfrac{15}{16}}mv_f^2=\dfrac{1}{2\pi \epsilon}\dfrac{q_1q_2}{R_f}[/tex]

Divide the equations

[tex]\dfrac{\dfrac{3}{4}}{\dfrac{15}{16}}=\dfrac{R_f}{R}\\\Rightarrow R_f=\dfrac{4}{5}R[/tex]

[tex]R_f=\dfrac{4}{5}R[/tex]

ACCESS MORE
EDU ACCESS