Respuesta :
Answer:
[tex]R_f=\dfrac{4}{5}R[/tex]
Explanation:
Here, the kinetic and potential energy is conserved
[tex]K_f-K_i=U_f-U_i\\\Rightarrow \dfrac{1}{2}mv_i^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{r}\\\Rightarrow \dfrac{1}{2}m(\dfrac{1}{2}v_f)^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{R}[/tex]
For the second case
[tex]K_f-K_i=U_f-U_i\\\Rightarrow \dfrac{1}{2}mv_i^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{r}\\\Rightarrow \dfrac{1}{2}m(\dfrac{1}{4}v_f)^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{R_f}[/tex]
Subtract the equations we get
[tex]\dfrac{1}{2}m(\dfrac{1}{2}v_f)^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{R}\\ \dfrac{1}{2}m(\dfrac{1}{4}v_f)^2-\dfrac{1}{2}mv_f^2=\dfrac{1}{4\pi \epsilon}\dfrac{q_1q_2}{R_f}[/tex]
[tex]\\\Rightarrow \dfrac{1}{4}mv_f^2-mv_f^2=\dfrac{1}{2\pi \epsilon}\dfrac{q_1q_2}{R}\\ \dfrac{1}{16}mv_f^2-mv_f^2=\dfrac{1}{2\pi \epsilon}\dfrac{q_1q_2}{R_f}\\\Rightarrow -\dfrac{3}{4}mv_f^2=\dfrac{1}{2\pi \epsilon}\dfrac{q_1q_2}{R}\\ -\dfrac{15}{16}}mv_f^2=\dfrac{1}{2\pi \epsilon}\dfrac{q_1q_2}{R_f}[/tex]
Divide the equations
[tex]\dfrac{\dfrac{3}{4}}{\dfrac{15}{16}}=\dfrac{R_f}{R}\\\Rightarrow R_f=\dfrac{4}{5}R[/tex]
[tex]R_f=\dfrac{4}{5}R[/tex]