Respuesta :
Answer:
A)
[tex] 608.4\times10^{-6} N[/tex]
B)
[tex]5.5 ms^{-2}[/tex]
Explanation:
A)
[tex]q[/tex] = magnitude of charge on each sphere = [tex]26\times10^{-9} C[/tex]
[tex]r[/tex] = Distance between the two spheres = 10 cm = 0.10 m
[tex]F[/tex] = magnitude of force between the two spheres
Using Coulomb's law, magnitude of the force between two charged sphere
[tex]F = \frac{kq^{2}}{r^{2}}\\F = \frac{(9\times10^{9})(26\times10^{-9})^{2}}{(0.1)^{2}}\\F = 608.4\times10^{-6} N[/tex]
B)
[tex]m[/tex] = mass of the sphere = [tex]0.14\times10^{-3} kg[/tex]
[tex]F_{g}[/tex] = Force of gravity in down direction = [tex]mg = (0.14\times10^{-3})(9.8) = 1.372\times10^{-3} N[/tex]
[tex]F[/tex] = Electrostatic force of repulsion in upward direction = [tex] 608.4\times10^{-6} N[/tex]
[tex]a[/tex] = acceleration of the sphere
Force equation for the motion of the sphere is given as
[tex]F_{g} - F = ma \\1.372\times10^{-3} - 608.4\times10^{-6} = (0.14\times10^{-3}) a\\a = 5.5 ms^{-2}[/tex]
Answer:
(a) 6.084 x 10^-13 N
(b) 97.87 m/s^2
Explanation:
mass, m = 0.14 g
charge, q = - 26 nC = 26 x 10^-19 C
d = 10 cm = 0.1 m
(a) the force between the two is electrostatic force.
[tex]F_{e}=\frac{Kq^{2}}{d^{2}}[/tex]
[tex]F_{e}=\frac{9\times 10^{9}\times 26\times 26\times 10^{-18}}{0.01}[/tex]
Fe = 6.084 x 10^-13 N
(b) the gravitational force of mass
Fg = m x g = 0.14 x 10^-3 x 9.8
Fg = 137.2 x 10^-5 N
Net force acting on the mass
Fg - Fe = ma
137.2 x 10^-5 - 6.084 x 10^-13 = 0.14 x 10^-3 x a
a = 97.87 m/s^2